THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH2010C/D Advanced Calculus 2019-2020

Solution to Midterm Examination

- 1. (12 pts) Answer the following questions.
	- (a) Find the equation of plane Π passing through the point $(2, 3, -1)$ and parallel to the plane $3x-4y+7z=1$.
	- (b) Find the distance between the two planes in part (a).
	- (c) Find the angle between the plane Π and the plane $8x + 3y z = 2$.

Ans:

(a) Since the plane Π is parallel to $3x - 4y + 7z = 1$, it has an equation of the form $3x - 4y + 7z = a$ for some real number a.

Put $(2, 3, -1)$ into it, we have $3(2) - 4(3) + 7(-1) = a$ and so $a = -13$.

Therefore, equation of Π: $3x - 4y + 7z = -13$.

(b) Method 1:

By formula, distance $=$ $1 - (-13)$ $\sqrt{(3)^2 + (-4)^2 + 7^2}$ $=\frac{14}{\sqrt{2}}$ $\frac{4}{74} = \frac{7}{7}$ √ 74 $\frac{1}{37}$.

Method 2:

Let L be the line through $(2, 3, -1)$, since $L \perp \Pi$, L can be given by the following parametric equation:

$$
L(t) = (2, 3, -1) + t(3, -4, 7) = (2 + 3t, 3 - 4t, -1 + 7t)
$$

Put it into $3x - 4y + 7z = 1$, we have

$$
3(2+3t) - 4(3-4t) + 7(-1+7t) = 1
$$

$$
-13 + 74t = 1
$$

$$
t = \frac{7}{37}
$$

Therefore, L intersects the plane $3x - 4y + 7z = 1$ at $L\left(\frac{7}{2}\right)$ $\frac{1}{37}$ and the distance between the planes

$$
= \left\| L\left(\frac{7}{37}\right) - L(0) \right\| = \left\| \frac{7}{37}(3, -4, 7) \right\| = \frac{7}{37} \sqrt{3^2 + (-4)^2 + 7^2} = \frac{7\sqrt{74}}{37}
$$

(c)

.

Angle between planes = Angle between normals
\n
$$
= \cos^{-1} \left(\frac{(8,3,-1) \cdot (3,-4,7)}{\|(8,3,-1)\| \|(3,-4,7)\|} \right)
$$
\n
$$
= \cos^{-1} \frac{5}{74}
$$

2. (6 pts) Compute the arclength of the curve $\gamma(t) = (t^2, 2t, \ln t)$ for $1 \le t \le 5$.

Ans:

We have $\gamma(t) = (t^2, 2t, \ln t)$ and $\gamma'(t) = (2t, 2, \frac{1}{t})$ $\frac{1}{t}$). Then,

$$
\begin{aligned}\n\text{Arclength} &= \int_{1}^{5} \|\gamma'(t)\| \, dt \\
&= \int_{1}^{5} \sqrt{(2t)^2 + 2^2 + (\frac{1}{t})^2} \, dt \\
&= \int_{1}^{5} \sqrt{4t^2 + 4 + \frac{1}{t^2}} \, dt \\
&= \int_{1}^{5} \sqrt{(2t + \frac{1}{t})^2} \, dt \\
&= \int_{1}^{5} 2t + \frac{1}{t} \, dt \\
&= [t^2 + \ln t]_{1}^{5} \\
&= 24 + \ln 5\n\end{aligned}
$$

3. (10 pts) Evaluate the following limits or show they do not exist.

(a)
$$
\lim_{(x,y)\to(0,0)} \frac{x^2y - y^3}{x^2 + y^2}
$$

(b)
$$
\lim_{(x,y)\to(0,0)} \frac{x^3y - x^2y - 3xy^2}{x^4 + y^2}
$$

Ans:

(a)

and

$$
\lim_{(x,y)\to(0,0)} \frac{x^2y - y^3}{x^2 + y^2} = \lim_{r\to 0} \frac{r^3 \cos^2 \theta \sin \theta - r^3 \sin^3 \theta}{r^2}
$$

$$
= \lim_{r\to 0} r(\cos^2 \theta \sin \theta - \sin^3 \theta)
$$

$$
= 0 \qquad \text{(By sandwich theorem)}
$$

(b) We study the limits along different paths.

$$
\lim_{(x,y)\to(0,0)} \frac{x^3y - x^2y - 3xy^2}{x^4 + y^2} = \lim_{y\to 0} \frac{(0)^3y - (0)^2y - 3(0)y^2}{(0)^4 + y^2} = \lim_{y\to 0} \frac{0}{y^2} = 0
$$

$$
\lim_{(x,y)\to(0,0)} \frac{x^3(x^2) - x^2(x^2) - 3x(x^2)^2}{x^4 + (x^2)^2} = \lim_{x\to 0} \frac{-2x^5 - x^4}{2x^4} = \lim_{x\to 0} \frac{-2x - 1}{2} = -\frac{1}{2}
$$

The two paths give different limits and so $\lim_{(x,y)\to(0,0)}$ $x^4 + y^2$ $\frac{dy}{dx}$ does not exist.

4. (10 pts) Let
$$
f(x, y) = \frac{e^{xy+6}}{1+4x+3y}
$$
.

- (a) Find df , the differential of f .
- (b) Use the result of (a) to approximate the change in f when (x, y) changes from $(-2, 3)$ to $(-1.9, 2.95)$.

Ans:

(a)
$$
f(x,y) = \frac{e^{xy+6}}{1+4x+3y}
$$
 and so
\n
$$
df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = \frac{(4x+3y+1)ye^{xy+6} - 4e^{xy+6}}{(4x+3y+1)^2}dx + \frac{(4x+3y+1)xe^{xy+6} - 3e^{xy+6}}{(4x+3y+1)^2}dy.
$$

(b) Put $(x, y) = (-2, 3), dx = -1.9 - (-2) = 0.1$ and $dy = 2.95 - 3 = -0.05$, so

$$
\Delta f \approx df = \frac{(2)(3)e^0 - (4)e^0}{(2)^2}(0.1) + \frac{(2)(-2)e^0 - (3)e^0}{(2)^2}(-0.05) = 0.05 + 0.0875 = 0.1375
$$

5. (10 pts) Lef $f(x, y) = \ln(30 - 10x + x^2 + y^2)$.

(a) Draw the level set of f through the point $(2, 4)$. Label all its intercept(s).

(b) Find the direction where f decreases most rapidly at the point $(2, 4)$.

Ans:

- (a) Lef $f(x, y) = \ln(30 10x + x^2 + y^2)$ and then $f(2, 4) = \ln 30$. If $f(x, y) = f(2, 4)$, then $\ln(30 - 10x + x^2 + y^2) = \ln 30$ and so $x^2 - 10x + y^2 = 0$. It can be expressed as $(x-5)^2 + y^2 = 5^2$ which gives the circle centered at $(5,0)$ with radius 5.
- (b) Note that $\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = \left(\frac{-10 + 2x}{30 10x + x^2 + y^2}, \frac{2y}{30 10x + x^2}\right)$ $\frac{2y}{30-10x+x^2+y^2}$.

Therefore, the direction where f decreases most rapidly at the point $(2, 4) = -\nabla f(2, 4) = (\frac{1}{5}, -\frac{4}{15})$ $\frac{1}{15}$).

- 6. (10 pts) Suppose that $f : \mathbb{R}^3 \to \mathbb{R}$ is C^∞ function and there exists a positive integer n such that $f(tx, ty, tz)$ $t^n f(x, y, z)$ for all $t \in \mathbb{R}$ and $(x, y, z) \in \mathbb{R}^3$.
	- (a) Show that

$$
x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z} = nf.
$$

(b) Suppose $n = 7$ and $\frac{\partial f}{\partial x \partial y \partial z}(1,1,1) = 1$. Find the value of $\frac{\partial f}{\partial x \partial y \partial z}(-3,-3,-3)$.

Ans:

(a) We have $f(tx, ty, tz) = tⁿ f(x, y, z)$, then we differentiate both sides with respect to t and get

$$
x\frac{\partial f}{\partial x}(tx, ty, tz) + y\frac{\partial f}{\partial y}(tx, ty, tz) + z\frac{\partial f}{\partial z}(tx, ty, tz) = nt^{n-1}f(x, y, z).
$$

Put $t = 1$, then we have

$$
f(tx, ty, tz) = t^n f(x, y, z)
$$

(b)

$$
f(tx, ty, tz) = tn f(x, y, z)
$$

\n
$$
(\text{Take } \frac{\partial}{\partial z}) \qquad t \frac{\partial f}{\partial z}(tx, ty, tz) = tn \frac{\partial f}{\partial z}(x, y, z)
$$

\n
$$
(\text{Take } \frac{\partial}{\partial y}) \qquad t2 \frac{\partial^2 f}{\partial y \partial z}(tx, ty, tz) = tn \frac{\partial^2 f}{\partial y \partial z}(x, y, z)
$$

\n
$$
(\text{Take } \frac{\partial}{\partial x}) \qquad t3 \frac{\partial^3 f}{\partial x \partial y \partial z}(tx, ty, tz) = tn \frac{\partial^2 f}{\partial x \partial y \partial z}(x, y, z)
$$

Put $t = -3$, $n = 7$, $x = y = z = 1$, we have

$$
(-3)^3 \frac{\partial^3 f}{\partial x \partial y \partial z}(-3, -3, -3) = (-3)^7 \frac{\partial^3 f}{\partial x \partial y \partial z}(1, 1, 1)
$$

$$
\frac{\partial^3 f}{\partial x \partial y \partial z}(-3, -3, -3) = (-3)^4 (1)
$$

$$
= 81
$$

7. (22 pts) Let

$$
f(x,y) = \begin{cases} \sqrt[3]{xy^2} \sin \frac{x}{y} & \text{if } y \neq 0; \\ 0 & \text{if } y = 0. \end{cases}
$$

- (a) Show that f is continuous at $(0, 0)$.
- (b) Show that $\frac{\partial f}{\partial x}(0,0) = 0$ and $\frac{\partial f}{\partial y}(0,0) = 0$. (c) Let $\mathbf{u} = \begin{pmatrix} 3 \\ -\frac{3}{5} \end{pmatrix}$ $\frac{3}{5}, \frac{4}{5}$ 5 . Compute the directional derivative $\nabla_{\mathbf{u}} f(0,0) = D_{\mathbf{u}} f(0,0)$.
- (d) Determine all the point(s) for which f is differentiable? Prove your assertion.

Ans:

(a) Note that $0 \le |f(x,y)| \le |\sqrt[3]{xy^2}|$ near $(0,0)$ and $\lim_{(x,y)\to(0,0)} |\sqrt[3]{xy^2}| = \lim_{r\to 0} r |\sqrt[3]{\cos\theta \sin^2\theta}| = 0.$ By sandwich theorem, $\lim_{(x,y)\to(0,0)}|f(x,y)|=0$ which implies $\lim_{(x,y)\to(0,0)}f(x,y)=0$. We have $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$ and so f is continuous at $(0,0)$.

Comment: When you evaluate $\lim_{(x,y)\to(0,0)} f(x,y)$, you are looking at the behaviour of the function $f(x,y)$ near the point $(0,0)$, so you may not say $\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)}$ $\sqrt[3]{xy^2} \sin \frac{x}{x}$ $\frac{w}{y}$ since $f(x, y) = 0$ but not $\sqrt[3]{xy^2} \sin \frac{x}{x}$ $\frac{w}{y}$ when $(x, y) = (x, 0)$.

(b) We have

$$
\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0
$$

and

$$
\frac{\partial f}{\partial y}(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{h} = \lim_{h \to 0} \frac{\sqrt[3]{(0)(k)^2} \sin(\frac{0}{k}) - 0}{h} = 0.
$$

(c)

$$
D_{\mathbf{u}}f(0,0) = \lim_{t \to 0} \frac{f(t\mathbf{u}) - f(0)}{t}
$$

=
$$
\lim_{t \to 0} \frac{\sqrt[3]{(-\frac{3}{5}t)(\frac{4}{5}t)^2} \sin(\frac{-\frac{3}{5}t}{\frac{4}{5}t})}{t}
$$

=
$$
\lim_{t \to 0} \sqrt[3]{-\frac{48}{125}} \sin(-\frac{3}{4})
$$

Comment: We have the fact that if f is differentiable at $(0, 0)$, then $\nabla f(0, 0) \cdot \mathbf{u} = D_{\mathbf{u}}f(0, 0)$. However, we do not know whether f is differentiable at $(0, 0)$ at this moment (and in fact it is not).

(d) • Note that $\nabla f(0,0) \cdot \mathbf{u} = \mathbf{0} \cdot \mathbf{u} = 0 \neq D_{\mathbf{u}}f(0,0)$, so f is not differentiable at $(0,0)$.

• For $x \neq 0$,

$$
\frac{\partial f}{\partial y}(x,0) = \lim_{k \to 0} \frac{f(x,k) - f(x,0)}{k}
$$

$$
= \lim_{k \to 0} \frac{\sqrt[3]{x k^2} \sin(\frac{x}{k})}{k}
$$

$$
= \lim_{k \to 0} \sqrt[3]{\frac{x}{k}} \sin(\frac{x}{k})
$$

which does not exist for any $x \neq 0$.

Therefore, f is not differentiable at $(x, 0)$ for $x \neq 0$.

• For $y \neq 0$, $f(0, y) = 0$ and so $\frac{\partial f}{\partial y}(0, y) = 0$. Also,

$$
\frac{\partial f}{\partial x}(0, y) = \lim_{h \to 0} \frac{f(h, y) - f(0, y)}{h}
$$

\n
$$
= \lim_{h \to 0} \frac{\sqrt[3]{hy^2} \sin(\frac{h}{y}) - 0}{h}
$$

\n
$$
= \lim_{h \to 0} (\frac{y}{h})^{2/3} \sin(\frac{h}{y})
$$

\n
$$
= \lim_{h \to 0} (\frac{h}{y})^{2/3} \left[\frac{\sin(\frac{h}{y})}{(\frac{h}{y})} \right]
$$

\n
$$
= (0)(1)
$$

\n
$$
= 0
$$

For $x \neq 0, y \neq 0,$

$$
\frac{\partial f}{\partial x}(x, y) = \frac{1}{3}(\frac{x}{y})^{-2/3} \sin(\frac{x}{y}) + (\frac{x}{y})^{1/3} \cos(\frac{x}{y})
$$

$$
\frac{\partial f}{\partial y}(x, y) = \frac{2}{3}(\frac{x}{y})^{1/3} \sin(\frac{x}{y}) - (\frac{x}{y})^{1/3}(\frac{1}{y}) \cos(\frac{x}{y})
$$

Both $\frac{\partial f}{\partial x}(x, y)$ and $\frac{\partial f}{\partial y}(x, y)$ are continuous and $\lim_{(x,y)\to(0,y_0)}$ $\frac{\partial f}{\partial x}(x,y) = \lim_{(x,y)\to(0,y_0)}$ $\frac{\partial f}{\partial y}(x,y) = 0$ for $y_0 \neq 0$. Hence, f is C^1 on $\{(x, y) \in \mathbb{R}^2 : y \neq 0\}$ which implies $f(x, y)$ is differentiable for $y \neq 0$. Therefore, the set where f is differentiable is $\{(x, y) \in \mathbb{R}^2 : y \neq 0\}.$

Comment: Since the function $\sqrt[3]{x}$ is not differentiable at $x = 0$, you may not say $\sqrt[3]{xy^2}$ is differentiable for all $(x, y) \in \mathbb{R}^2$.